
Simon Brown
@simonbrown

Visualising software
architecture with the

C4 model

@simonbrown

Over the past decade, many
teams have thrown away

big design up front

@simonbrown

Unfortunately, architectural
thinking, documentation,

diagramming, and modelling

were also often discarded

@simonbrown

UML?

#2 “Not everybody else on the team knows it.”

#3 “I’m the only person on the team who knows it.”

#36 “You’ll be seen as old.”

#37 “You’ll be seen as old-fashioned.”

#66 “The tooling sucks.”

#80 “It’s too detailed.”

#81 “It’s a very elaborate waste of time.”

#92 “It’s not expected in agile.”

#97 “The value is in the conversation.”

“Just use a whiteboard!”

@simonbrown

If you’re going to use “boxes & lines”,
at least do so in a structured way,
using a self-describing notation

Moving fast in the same direction

as a team requires

good communication

“ ”
To describe a software architecture,

we use a model composed of

multiple views or perspectives.

Architectural Blueprints - The “4+1” View Model of Software Architecture

Philippe Kruchten

Why is there a separation
between the logical and

development views?

“ ”Our architecture diagrams

don’t match the code.

“model-code gap”

We lack a common vocabulary

to describe software architecture

https://en.wikipedia.org/wiki/Circuit_diagram

@simonbrownhttps://en.wikipedia.org/wiki/Component_diagram

Software System

Web

Application

Logging
Component

Relational

Database

When drawing software
architecture diagrams,

think like a software developer

If software developers created building architecture diagrams…

Hallway

Stairs

Kitchen Living Room

Bed1

Bed3Bed2Stairs Bathroom

Bathroom

W
at

er
 in

W
at

er
 o

ut

 P
ea

k
el

ec
tri

ci
ty

 O
ff-

pe
ak

 e
le

ct
ric

ity

A common set of abstractions

is more important

than a common notation

A software system is made up of one or more containers,

each of which contains one or more components,

which in turn are implemented by one or more code elements.

Code Code Code

Component Component Component

Container

(e.g. client-side web app, server-side web app, console application,

mobile app, microservice, database schema, file system, etc)

Container

(e.g. client-side web app, server-side web app, console application,

mobile app, microservice, database schema, fi

Container

(e.g. client-side web app, server-side web app, console application,

mobile app, microservice, database schema, fi

Software System

Zoom in

Zoom in

Level 1

System Context
Level 2

Containers
Level 3

Components
Level 4

Code

Zoom in

The C4 model for visualising

software architecture

c4model.com

Diagrams are maps

that help software developers navigate a large and/or complex codebase

The container diagram shows the
containers that reside inside

the software system boundary

The component diagram
shows the components

that reside inside an
individual container

The code level diagram shows the code
elements that make up a component

Plus some supplementary diagrams…

System Landscape Dynamic Deployment

@simonbrown

The C4 model is

notation independent

@simonbrown

Internet Banking System

[Software System]

Allows customers to view information
about their bank accounts,

and make payments.

Personal Banking
Customer

[Person]

A customer of the bank, with

personal bank accounts.

Mainframe Banking
System Facade

[Component: Spring Bean]

A facade onto the mainframe

banking system.

API Application

[Container: Java and Spring MVC]

Provides Internet banking functionality
via a JSON/HTTPS API.

@simonbrown

@simonbrown

Lines

Favour uni-directional lines showing the most important

dependencies or data flow, with an annotation to be explicit
about the purpose of the line and direction

No Yes

@simonbrown

Summarise the intent of the relationship

Single Page Application

[Container]

API Application

[Container]

Makes an API request to

Single Page Application

[Container]

API Application

[Container]

Makes API calls using

Sends an API response to

@simonbrown

Show both directions when

the intents are different

Microservice A

[Container]

Microservice B

[Container]

Requests a list of customers from

[JSON/HTTPS]

Sends new customers to

[Kafka topic]

@simonbrown

Beware of hiding the true story

Sends messages to

Microservice D

[Container]

Microservice C

[Container]

Sends messages to

Sends messages to

Sends messages to
Microservice B

[Container]

Microservice A

[Container]

Kafka

[Container]

@simonbrown

Beware of hiding the true story

Sends customer update messages to

Microservice D

[Container]

Microservice C

[Container]Sends customer update messages to

Microservice B

[Container]

Microservice A

[Container]

Topic X

 [Container: Kafka

Topic]

Topic Y

 [Container: Kafka

Topic]Sends order creation messages to Sends order creation messages to

@simonbrown

Beware of hiding the true story

Sends customer update messages to

Microservice D

[Container]

Microservice C

[Container]Subscribes to customer update

messages from

Microservice B

[Container]

Microservice A

[Container]

Topic X

 [Container: Kafka

Topic]

Topic Y

 [Container: Kafka

Topic]Sends order creation messages to
Subscribes to order creation

messages from

@simonbrown

Beware of hiding the true story

Sends customer update messages to

[via Kafka topic X]

Microservice D

[Container]

Microservice C

[Container]

Sends order creation messages to

[via Kafka topic Y]

Microservice A

[Container]

Microservice B

[Container]

@simonbrown

Key/legend

Explain shapes, line styles, colours, borders, acronyms, etc

… even if your notation seems obvious!

@simonbrown

@simonbrown

Arrowheads

Be careful, using different
arrowheads is very subtle;

readers may miss them

@simonbrown

Use shape, colour and size

to complement a diagram

that already makes sense

@simonbrown

@simonbrown

Be careful with icons

@simonbrown

@simonbrown

@simonbrown

#sa4d-1d

@simonbrown

Use icons to supplement text,

not replace it

@simonbrown

Increase the readability of

software architecture diagrams,

so they can stand alone

@simonbrown

Any narrative should complement

the diagram rather than explain it

@simonbrown

@simonbrown

Abstractions first,

notation second

Ensure that your team has a ubiquitous
language to describe software architecture

Simon Brown
@simonbrown

Thank you!

